Dynamic glass transition of filled polysiloxane upon electron irradiation
نویسندگان
چکیده
منابع مشابه
Electron anions and the glass transition temperature.
Properties of glasses are typically controlled by judicious selection of the glass-forming and glass-modifying constituents. Through an experimental and computational study of the crystalline, molten, and amorphous [Ca12Al14O32](2+) ⋅ (e(-))2, we demonstrate that electron anions in this system behave as glass modifiers that strongly affect solidification dynamics, the glass transition temperatu...
متن کاملStructural signal of a dynamic glass transition.
Pentaphenyl trimethyl trisiloxane is an isotropic liquid at room temperature with a dynamic glass transition at 224 K. Using x-ray reflectivity, we see surface density oscillations (layers) develop below 285 K, similar to those seen in other metallic and dielectric liquids and in computer simulations. The layering threshold is approximately 0.23 times the liquid-gas critical temperature. Upon c...
متن کاملControllable shrinking and shaping of glass nanocapillaries under electron irradiation.
The ability to reshape nanopores and observe their shrinkage under an electron microscope is a powerful and novel technique. It increases the sensitivity of the resistive pulse sensing and enables to detect very short and small molecules. However, this has not yet been shown for glass nanocapillaries. In contrast to their solid-state nanopore counterparts, nanocapillaries are cheap, easily fabr...
متن کاملDynamic glass transition in two dimensions.
The question of the existence of a structural glass transition in two dimensions is studied using mode coupling theory (MCT). We determine the explicit d dependence of the memory functional of mode coupling for one-component systems. Applied to two dimensions we solve the MCT equations numerically for monodisperse hard disks. A dynamic glass transition is found at a critical packing fraction ph...
متن کاملComputational Simulation of Ablation Phenomena in Glass-filled Phenolic Composites
A one–dimensional, transient and thermal degradation model for predicting responses of composite materials when are exposed to the fire is presented. The presented model simulates ablation of composites with different layers of materials and considers material properties as functions of temperature. The reactions are modeled by using Arrhenius-type parameters and density-temperature diagram...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Non-Crystalline Solids
سال: 2017
ISSN: 0022-3093
DOI: 10.1016/j.jnoncrysol.2016.10.025